Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.190
Filtrar
1.
Physiol Plant ; 176(2): e14271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566130

RESUMO

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Assuntos
Giberelinas , Pyrus , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Pyrus/metabolismo , Ácido Ascórbico/metabolismo , Dormência de Plantas/genética , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 24(1): 239, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570782

RESUMO

The postharvest life of cut flowers is limited, which is a major challenge and varies greatly depending on plant varieties, cut flower stage, flower length of the harvested shoots, and storage conditions including postharvest treatments. As a result, improving the vase life and quality of cut flowers in regulating postharvest characteristics and overcoming these challenges is critical to the horticulture business. Novel engineered nanocomposites were created and tested for possible impacts on flower bud opening, postharvest life extension, longevity regulation, and preservation and enhancement of the strength and appearance of cut flowers. The experiment was conducted as a factorial experiment using a completely randomized design (CRD) with two factors. The first factor was two holding solutions (without or with sucrose at 20 gL-1). The second factor was 12 pulsing treatments for 24 h; distilled water as a control, 75 ppm GA3, multi-walled carbon nanotubes MWCNTs at 10, 20, 30, 40, and 50 ppm, and MWCNTs (10, 20, 30, 40, and 50 ppm)/GA3 (75 ppm) composites; each treatment had 3 replicates, for a total of 72 experimental units. In the present study, gibberellic acid (GA3) was synthesized in functionalized (MWCNT/GA3 composites) as a novel antisenescence agent, and their effect on the vase life quality of cut rose flowers Rosa hybrida cv. 'Moonstone' was compared by assaying several parameters critical for vase life. The adsorption of GA3 on MWCNTs was proven by performing FTIR spectroscopy which ensures that the formation of the MWCNTs/GA3 composite preserves the nanostructure and was examined by high-resolution transmission electron microscopy (HR-TEM). The results revealed that sucrose in the holding solution showed a significant increase in fresh weight, flower diameter, and vase life by 10.5, 10.6, and 3.3% respectively. Applying sucrose with MWCNTs 20 ppm/GA3 75 ppm composites or MWCNTs 20 ppm alone, was critical for the significant increase in flower opening by 39.7 and 28.7%, and longevity by 34.4 and 23.2%, respectively, and significantly increased chlorophyll a, b, total chlorophyll, anthocyanin, total phenolic content, and 2,2-Diphenyl-1-picrylhydrazyl scavenging activity as compared to the control.


Assuntos
Giberelinas , Nanotubos de Carbono , Rosa , Clorofila A , Sacarose
3.
BMC Genom Data ; 25(1): 36, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609855

RESUMO

BACKGROUND: Soil salinization is one of the vital factors threatening the world's food security. To reveal the biological mechanism of response to salt stress in wheat, this study was conducted to resolve the transcription level difference to salt stress between CM6005 (salt-tolerant) and KN9204 (salt-sensitive) at the germination and seedling stage. RESULTS: To investigate the molecular mechanism underlying salt tolerance in wheat, we conducted comprehensive transcriptome analyses at the seedling and germination stages. Two wheat cultivars, CM6005 (salt-tolerant) and KN9204 (salt-sensitive) were subjected to salt treatment, resulting in a total of 24 transcriptomes. Through expression-network analysis, we identified 17 modules, 16 and 13 of which highly correlate with salt tolerance-related phenotypes in the germination and seedling stages, respectively. Moreover, we identified candidate Hub genes associated with specific modules and explored their regulatory relationships using co-expression data. Enrichment analysis revealed specific enrichment of gibberellin-related terms and pathways in CM6005, highlighting the potential importance of gibberellin regulation in enhancing salt tolerance. In contrast, KN9204 exhibited specific enrichment in glutathione-related terms and activities, suggesting the involvement of glutathione-mediated antioxidant mechanisms in conferring resistance to salt stress. Additionally, glucose transport was found to be a fundamental mechanism for salt tolerance during wheat seedling and germination stages, indicating its potential universality in wheat. Wheat plants improve their resilience and productivity by utilizing adaptive mechanisms like adjusting osmotic balance, bolstering antioxidant defenses, accumulating compatible solutes, altering root morphology, and regulating hormones, enabling them to better withstand extended periods of salt stress. CONCLUSION: Through utilizing transcriptome-level analysis employing WGCNA, we have revealed a potential regulatory mechanism that governs the response to salt stress and recovery in wheat cultivars. Furthermore, we have identified key candidate central genes that play a crucial role in this mechanism. These central genes are likely to be vital components within the gene expression network associated with salt tolerance. The findings of this study strongly support the molecular breeding of salt-tolerant wheat, particularly by utilizing the genetic advancements based on CM6005 and KN9204.


Assuntos
Antioxidantes , Triticum , Triticum/genética , Giberelinas , Estresse Salino/genética , Perfilação da Expressão Gênica , Plântula/genética , Glutationa
4.
Physiol Plant ; 176(2): e14290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634341

RESUMO

In the present study, we analyzed GA3 (gibberellin)-treated sugarcane samples at the transcriptomic level to elucidate the differential expression of genes that influence sucrose accumulation. Previous research has suggested that GA3 application can potentially delay sink saturation by enhancing sink strength and demand, enabling the accommodation of more sucrose. To investigate the potential role of GA-induced modification of sink capacity in promoting higher sucrose accumulation, we sought to unravel the differential expression of transcripts and analyze their functional annotation. Several genes homologous to the sugar-phosphate/phosphate translocator, UTP-glucose-1-phosphate uridylyltransferase, and V-ATPases (vacuolar-type H+ ATPase) were identified as potentially associated with the increased sucrose content observed. A differentially expressed transcript was found to be identical to the mRNA of an unknown protein. Homology-based bioinformatics analysis suggested it to be a hydrolase enzyme, which could potentially act as a stimulator of sucrose buildup. The database of differentially expressed transcripts obtained in this study under the influence of GA3 represents a valuable addition to the sugarcane transcriptomics and functional genomics knowledge base.


Assuntos
Giberelinas , Saccharum , Giberelinas/metabolismo , Transcriptoma , Saccharum/genética , Saccharum/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Fosfatos
5.
Planta ; 259(6): 126, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635035

RESUMO

MAIN CONCLUSION: The dormancy release by KAR1 is associated with a reduction of coleorhiza and radicle sensitivity to ABA as well as with reduction the ABA/GAs ratio in the coleorhiza, by a decrease content of ABA, and in the radicle, by a decrease the ABA and an increase of the GAs contents. Both, karrikin 1 (KAR1) and gibberellin A3 (GA3), release dormancy in Avena fatua caryopses, resulting in the emergence of coleorhiza (CE) and radicle (RE). Moreover, KAR1 and GA3 stimulate CE and RE in the presence of abscisic acid (ABA), the stimulation being more effective in CE. The stimulatory effects of KAR1 and GA3 involve also the CE and RE rates. A similar effect was observed at KAR1 concentrations much lower than those of GA3. KAR1 increased the levels of bioactive GA5 and GA6 in embryos and the levels of GA1, GA5, GA3, GA6 and GA4 in radicles. The stimulatory effect of KAR1 on germination, associated with increased levels of gibberellins (GAs) and reduced levels of ABA in embryos, was counteracted by paclobutrazol (PAC), commonly regarded as a GAs biosynthesis inhibitor. Consequently, KAR1 decreased the ABA/GAs ratio, whereas PAC, used alone or in combination with KAR1, increased it. The ABA/GAs ratio was reduced by KAR1 in both coleorhiza and radicle, the effect being stronger in the latter. We present the first evidence that KAR1-induced dormancy release requires a decreased ABA/GAs ratio in coleorhiza and radicle. It is concluded that the dormancy-releasing effect of KAR1 in A. fatua caryopses includes (i) a reduction of the coleorhiza and radicle sensitivity to ABA, and (2) a reduction of the ABA/GAs ratio (i) in the coleorhiza, by decreasing the ABA content, and (ii) in the radicle, by decreasing the ABA and increasing the content GAs, particularly GA1. The results may suggest different mechanisms of dormancy release by KAR1 in monocot and dicot seeds.


Assuntos
Ácido Abscísico , Avena , Germinação , Giberelinas , Sementes
6.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654190

RESUMO

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Assuntos
Germinação , Dormência de Plantas , Triticum , Triticum/genética , Triticum/enzimologia , Triticum/fisiologia , Dormência de Plantas/genética , Germinação/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Peroxidases/genética , Peroxidases/metabolismo , Plantas Geneticamente Modificadas , Ácido Abscísico/metabolismo , Genes de Plantas
7.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649857

RESUMO

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Giberelinas/metabolismo , Regiões Promotoras Genéticas/genética , Etilenos/metabolismo
8.
Sci Rep ; 14(1): 7896, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570571

RESUMO

Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.


Assuntos
Benzilaminas , Giberelinas , Giberelinas/farmacologia , Benzilaminas/farmacologia , Plantas , Carboidratos/análise , Hormônios/farmacologia , Folhas de Planta/química
9.
Planta ; 259(4): 83, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441675

RESUMO

MAIN CONCLUSION: WOX family gene WOX2 is highly expressed during seed development, which functions redundantly with WOX1 and WOX4 to positively regulate seed germination. WOX (WUSCHEL-related homeobox) is a family of transcription factors in plants. They play essential roles in the regulation of plant growth and development, but their function in seed germination is not well understood. In this report, we show that WOX1, WOX2, and WOX4 are close homologues in Arabidopsis. WOX2 has a redundant function with WOX1 and WOX4, respectively, in seed germination. WOX2 is highly expressed during seed development, from the globular embryonic stage to mature dry seeds, and its expression is decreased after germination. Loss of function single mutant wox2, and double mutants wox1 wox2 and wox2 wox4-1 show decreased germination speed. WOX2 and WOX4 are essential for hypocotyl-radicle zone elongation during germination, potentially by promoting the expression of cell wall-related genes. We also found that WOX2 and WOX4 regulate germination through the gibberellin (GA) pathway. These results suggest that WOX2 and WOX4 integrate the GA pathway and downstream cell wall-related genes during germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular , Germinação/genética , Giberelinas , Proteínas de Homeodomínio/genética , Sementes/genética
10.
Funct Integr Genomics ; 24(2): 59, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498207

RESUMO

Rice is an essential but highly stress-susceptible crop, whose root system plays an important role in plant development and stress adaptation. The rice root system architecture is controlled by gene regulatory networks involving different phytohormones including auxin, jasmonate, and gibberellin. Gibberellin is generally known as a molecular clock that interacts with different pathways to regulate root meristem development. The exogenous treatment of rice plantlets with Gibberellin reduced the number of crown roots, whilst the exogenous jasmonic acid treatment enhanced them by involving a Germin-like protein OsGER4. Due to those opposite effects, this study aims to investigate the effect of Gibberellin on crown root development in the rice mutant of the plasmodesmal Germin-like protein OsGER4. Under exogenous gibberellin treatment, the number of crown roots significantly increased in osger4 mutant lines and decreased in the OsGER4 overexpressed lines. GUS staining showed that OsGER4 was strongly expressed in rice root systems, particularly crown and lateral roots under GA3 application. Specifically, OsGER4 was strongly expressed from the exodermis, epidermis, sclerenchyma to the endodermis layers of the crown root, along the vascular bundle and throughout LR primordia. The plasmodesmal protein OsGER4 is suggested to be involved in crown root development by maintaining hormone homeostasis, including Gibberillin.


Assuntos
Giberelinas , Glicoproteínas , Oryza , Giberelinas/farmacologia , Giberelinas/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo
11.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542341

RESUMO

The diversity in the petal morphology of chrysanthemums makes this species an excellent model for investigating the regulation mechanisms of petal size. However, our understanding of the molecular regulation of petal growth in chrysanthemums remains limited. The GASA (gibberellic acid [GA]-stimulated Arabidopsis) protein plays a significant role in various aspects of plant growth and development. Previous studies have indicated that GEG (a gerbera homolog of the gibberellin-stimulated transcript 1 [GAST1] from tomato) is involved in regulating ray petal growth by inhibiting cell expansion in gerberas. In this study, we successfully cloned the GASA family gene from chrysanthemums, naming it CmGEG, which shares 81.4% homology with GEG. Our spatiotemporal expression analysis revealed that CmGEG is expressed in all tissues, with the highest expression levels observed in the ray florets, particularly during the later stages of development. Through transformation experiments, we demonstrated that CmGEG inhibits petal elongation in chrysanthemums. Further observations indicated that CmGEG restricts cell elongation in the top, middle, and basal regions of the petals. To investigate the relationship between CmGEG and GA in petal growth, we conducted a hormone treatment assay using detached chrysanthemum petals. Our results showed that GA promotes petal elongation while downregulating CmGEG expression. In conclusion, the constrained growth of chrysanthemum petals may be attributed to the inhibition of cell elongation by CmGEG, a process regulated by GA.


Assuntos
Proteínas de Arabidopsis , Asteraceae , Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Asteraceae/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Funct Plant Biol ; 512024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467137

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-associated proteins are a class of transmembrane proteins involved in intracellular trafficking pathways. However, the functions of many SNARE domain-containing proteins remain unclear. We have previously identified a SNARE-associated gene in alfalfa (Medicago sativa ) KILLING ME SLOWLY1 (MsKMS1 ), which is involved in various abiotic stresses. In this study, we investigated the function of MsKMS1 in the seed germination of transgenic tobacco (Nicotiana tabacum ). Phylogenetic analysis showed that MsKMS1 was homologous to the SNARE-associated or MAPR component-related proteins of other plants. Germination assays revealed that MsKMS1 negatively regulated seed germination under normal, D-mannitol and abscisic acid-induced stress conditions, yet MsKMS1 -overexpression could confer enhanced heat tolerance in transgenic tobacco. The suppressive effect on germination in MsKMS1 -overexpression lines was associated with higher abscisic acid and salicylic acid contents in seeds. This was accompanied by the upregulation of abscisic acid biosynthetic genes (ZEP and NCED ) and the downregulation of gibberellin biosynthetic genes (GA20ox2 and GA20ox3 ). Taken together, these results suggested that MsKMS1 negatively regulated seed germination by increasing abscisic acid and salicylic acid contents through the expression of genes related to abscisic acid and gibberellin biosynthesis. In addition, MsKMS1 could improve heat tolerance during the germination of transgenic tobacco seeds.


Assuntos
Ácido Abscísico , Germinação , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Germinação/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Tabaco/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia
13.
J Integr Plant Biol ; 66(4): 771-786, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470298

RESUMO

Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.


Assuntos
Giberelinas , Oryza , Giberelinas/metabolismo , Oryza/genética , Oryza/metabolismo , Transdução de Sinais/genética , Sementes/metabolismo , Fenótipo
14.
J Integr Plant Biol ; 66(4): 731-748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482956

RESUMO

Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.


Assuntos
Giberelinas , Oryza , Giberelinas/farmacologia , Giberelinas/metabolismo , Germinação/fisiologia , Potássio/metabolismo , Oryza/metabolismo , Sementes/metabolismo , Estresse Salino , Proteínas de Membrana Transportadoras/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Plant Sci ; 343: 112074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548138

RESUMO

As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.


Assuntos
Giberelinas , Populus , Giberelinas/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Plantas Geneticamente Modificadas/genética
16.
J Hazard Mater ; 469: 133862, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38432090

RESUMO

The precise mechanism behind the association between plants' reactions to cadmium (Cd) stress and brassinosteroid (BR) remains unclear. In the current investigation, Cd stress quickly increased the endogenous BR concentration in the rice roots. Exogenous BR also increased the hemicellulose level in the root cell wall, which in turn increased its capacity to bind Cd. Simultaneously, the transcription level of genes responsible for root Cd absorption was decreased, including Natural Resistance-Associated Macrophage Protein 1/5 (OsNRAMP1/5) and a major facilitator superfamily gene called OsCd1. Ultimately, the increased expression of Heavy Metal ATPase 3 (OsHMA3) and the decreased expression of OsHMA2, which was in charge of separating Cd into vacuoles and translocating Cd to the shoots, respectively, led to a decrease in the amount of Cd that accumulated in the rice shoots. In contrast, transgenic rice lines overexpressing OsGSK2 (a negative regulator in BR signaling) accumulated more Cd, while OsGSK2 RNA interference (RNAi) rice line accumulated less Cd. Furthermore, BR increased endogenous Gibberellic acid (GA) level, and applying GA could replicate its alleviative effect. Taken together, BR decreased Cd accumulation in rice by mediating the cell wall's fixation capacity to Cd, which might relied on the buildup of the GA.


Assuntos
Cádmio , Giberelinas , Oryza , Cádmio/metabolismo , Oryza/genética , Oryza/metabolismo , Brassinosteroides , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
17.
Ultrason Sonochem ; 105: 106860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554531

RESUMO

Harder kernels of barley are regarded as one of the factors that restrict water and enzyme movement within the endosperm during malting. A comprehensive study of two domestic varieties was performed for evaluating malting quality. Both ß-glucan and total protein content of the Chinese domestic barley (Ganpi-6 and Kenpi-14) were significantly higher than Copeland. Grain hardness of the Chinese domestic barley was higher and water uptake ratio was lower compared with the Copeland. During germination, the expression levels of NCED1, NCED2 (major key regulatory enzymes for abscisic acid biosynthesis genes) were higher, whereas gibberelic acid (GA) synthesis genes (GA20ox1, GA2ox3, GA3ox2) were lower in the Ganpi-6, Kenpi-14 compared with Copeland. These two domestic barley varieties also showed significantly lower limit dextrinase and ß-glucanase activity compared with Copeland. Ultrasound treatment improved the malting quality of Ganpi-6 by enhancing water uptake and GA synthesis gene expression increased. Therefore, these findings provided insights into the future direction on the utilization of ultrasonication for the applications towards the improvement of the harder barley variety.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Água/química , Regulação da Expressão Gênica de Plantas , Germinação , Ondas Ultrassônicas , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Planta ; 259(5): 93, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509429

RESUMO

MAIN CONCLUSION: dnal7, a novel allelic variant of the OsHSP40, affects rice plant architecture and grain yield by coordinating auxins, cytokinins, and gibberellic acids. Plant height and leaf morphology are the most important traits of the ideal plant architecture (IPA), and discovering related genes is critical for breeding high-yield rice. Here, a dwarf and narrow leaf 7 (dnal7) mutant was identified from a γ-ray treated mutant population, which exhibits pleiotropic effects, including dwarfing, narrow leaves, small seeds, and low grain yield per plant compared to the wild type (WT). Histological analysis showed that the number of veins and the distance between adjacent small veins (SVs) were significantly reduced compared to the WT, indicating that DNAL7 controls leaf size by regulating the formation of veins. Map-based cloning and transgenic complementation revealed that DNAL7 is allelic to NAL11, which encodes OsHSP40, and the deletion of 2 codons in dnal7 destroyed the His-Pro-Asp (HPD) motif of OsHSP40. In addition, expression of DNAL7 in both WT and dnal7 gradually increased with the increase of temperature in the range of 27-31 °C. Heat stress significantly affected the seedling height and leaf width of the dnal7 mutant. A comparative transcriptome analysis of WT and dnal7 revealed that DNAL7 influenced multiple metabolic pathways, including plant hormone signal transduction, carbon metabolism, and biosynthesis of amino acids. Furthermore, the contents of the cytokinins in leaf blades were much higher in dnal7 than in the WT, whereas the contents of auxins were lower in dnal7. The contents of bioactive gibberellic acids (GAs) including GA1, GA3, and GA4 in shoots were decreased in dnal7. Thus, DNAL7 regulates rice plant architecture by coordinating the balance of auxins, cytokinins, and GAs. These results indicate that OsHSP40 is a pleiotropic gene, which plays an important role in improving rice yield and plant architecture.


Assuntos
Giberelinas , Oryza , Oryza/metabolismo , Alelos , Melhoramento Vegetal , Citocininas/metabolismo , Grão Comestível/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo
19.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491471

RESUMO

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Assuntos
Cádmio , Giberelinas , Poluentes do Solo , Cádmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Poluentes do Solo/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/metabolismo , Solo/química , Malondialdeído/metabolismo
20.
Plant Cell Rep ; 43(4): 99, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494540

RESUMO

KEY MESSAGE: In this manuscript, authors reviewed and explore the information on beneficial role of phytohormones to mitigate adverse effects of heavy metals toxicity in plants. Global farming systems are seriously threatened by heavy metals (HMs) toxicity, which can result in decreased crop yields, impaired food safety, and negative environmental effects. A rise in curiosity has been shown recently in creating sustainable methods to reduce HMs toxicity in plants and improve agricultural productivity. To accomplish this, phytohormones, which play a crucial role in controlling plant development and adaptations to stress, have emerged as intriguing possibilities. With a particular focus on environmentally friendly farming methods, the current review provides an overview of phytohormone-mediated strategies for reducing HMs toxicity in plants. Several physiological and biochemical activities, including metal uptake, translocation, detoxification, and stress tolerance, are mediated by phytohormones, such as melatonin, auxin, gibberellin, cytokinin, ethylene, abscisic acid, salicylic acid, and jasmonates. The current review offers thorough explanations of the ways in which phytohormones respond to HMs to help plants detoxify and strengthen their resilience to metal stress. It is crucial to explore the potential uses of phytohormones as long-term solutions for reducing the harmful effects of HMs in plants. These include accelerating phytoextraction, decreasing metal redistribution to edible plant portions, increasing plant tolerance to HMs by hormonal manipulation, and boosting metal sequestration in roots. These methods seek to increase plant resistance to HMs stress while supporting environmentally friendly agricultural output. In conclusion, phytohormones present potential ways to reduce the toxicity of HMs in plants, thus promoting sustainable agriculture.


Assuntos
Metais Pesados , Reguladores de Crescimento de Plantas , Ácido Abscísico , Citocininas , Giberelinas , Metais Pesados/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...